<em>Science</em> Gets Bentley and Payne's Perspective on Self-Assembly

Science Gets Bentley and Payne's Perspective on Self-Assembly

Science Gets Bentley and Payne's Perspective on Self-Assembly

Fischell Department of Bioengineering and Institute for Bioscience & Biotechnology Research professors William E. Bentley and Gregory F. Payne share their thoughts on phenolics, chemical compounds which could be used to fabricate new biomaterials with advanced functionality, in the July 12 issue of Science. The pair were invited to author a column for the journal's Perspectives section, in which experts comment on the papers presented in each issue.

The piece, titled "Nature's Other Self-Assemblers," reviews new research that suggests phenolics could be the next big thing in the field of self-assembling biological materials. Phenolics are a class of molecules that are abundant in nature, found everywhere from plants, to soil, to skin and hair. Their properties vary and they serve many purposes, including facilitating intercellular communication in plants and animals, wound healing, and disinfection, and are present as aromas or flavors in foods.

Though abundant in nature, phenolics remain relatively unstudied. Bentley and Payne are among the few scientists who have acquired a deeper understanding of their antioxidant and electrical properties, thanks to a novel characterization technique developed by Payne Group Research Associate Dr. Eunkyoung Kim. As part of the Maryland Biochip Collaborative, the professors and their groups are exploring the use of phenolics as interfaces between biological and electronic components in sensors and biomedical devices.

For more information on the Bentley and Payne Groups' work with phenolics, see: Eunkyoung Kim, Tanya Gordonov, Yi Liu, William E. Bentley, and Gregory F. Payne. "Reverse Engineering To Suggest Biologically Relevant Redox Activities of Phenolic Materials." ACS Chem. Biol. 2013, 8, 716−724.

For Bentley and Payne's Perspectives column, see Science 12 July 2013: 136-137. [DOI:10.1126/science.1241562] Abstract

July 11, 2013


Prev   Next

Current Headlines

Light-Sensing Memory, Sensor Devices Unleashed Via Pioneering Materials Design

Unveiling Nanoparticle Transport: Transforming Drug Delivery

Groundbreaking Plasma Innovation Shines as Invention of the Year

79 Undergrads Recognized at Annual Honors & Awards Celebration

Engineering Students Fabricate Tomorrow’s Solutions Today

Alum Returns to Fire Protection Engineering as New Online Program Director

Erika Moore Named a 2024 TED Fellow

ECE Ph.D. Student Wins UMD 3MT Competition

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar